完整後設資料紀錄
DC 欄位語言
dc.contributor.author尹邦嚴 等
dc.date.accessioned2009-06-02T08:39:25Z
dc.date.accessioned2020-07-05T06:34:05Z-
dc.date.available2009-06-02T08:39:25Z
dc.date.available2020-07-05T06:34:05Z-
dc.date.issued2006-06-08T02:48:19Z
dc.date.submitted2003-12-18
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2376/1941-
dc.description.abstractA great number of gene-finding programs have been developed for annotating newly sequenced DNA genomes. However, none of them have consistent performance over various species. Recently, a decision fusion concept that improves the prediction accuracy by combining the predictions obtained by multiple gene-finding programs has been raised. The existing combination methods are relatively ad-hoc or lack intensive experiments. In this paper, we propose a new combination method based on reinforcement learning which learns from history predictions obtained by existing gene-finding programs and derives the optimal policy for selecting the best prediction program at each nucleotide. The experimental results manifest that the proposed method can significantly improves the performance compared to the single best program.
dc.description.sponsorship逢甲大學,台中市
dc.format.extent6P.
dc.format.extent241942 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries中華民國92年全國計算機會議
dc.subjectBioinformatics
dc.subjectGene identification
dc.subjectReinforcement learning
dc.subjectDNA sequence
dc.subject.other生物資訊
dc.title使用增強學習法結合不同基因搜尋程式以提高基因識別之準確率
dc.title.alternativeReinforcement Learning for Improving Gene Identification Accuracy by Combination of Gene-Finding Programs
分類:2003年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
BI_0252003136.pdf236.27 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。