完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chi Ming Wong | |
dc.contributor.author | Lei Lam Olivia Ting | |
dc.date.accessioned | 2020-08-25T07:59:40Z | - |
dc.date.available | 2020-08-25T07:59:40Z | - |
dc.date.issued | 2016/02/01 | |
dc.identifier.issn | issn18190917 | |
dc.identifier.uri | http://dspace.fcu.edu.tw/handle/2376/2720 | - |
dc.description.abstract | This research focuses on methods for multiple period Value at Risk (VaR) estimation by utilizing some common approaches like RiskMetrics and empirical distribution and examining quantile regression. In a simulation study we compare the least square and quantile regression percentiles with the actual percentiles for different error distributions. We also discuss the method of selecting response and explanatory variables for the quantile regression approach. In an empirical study, we apply the three VaR estimation approaches to the aggregate returns of four major market indices. The results indicate that the quantile regression approach is better than the other two approaches. | |
dc.description.sponsorship | 逢甲大學 | |
dc.language.iso | 英文 | |
dc.relation.ispartofseries | 經濟與管理論叢 | |
dc.relation.ispartofseries | 第12卷第1期 | |
dc.subject | risk measures | |
dc.subject | value at risk | |
dc.subject | quantile regression | |
dc.title | A Quantile Regression Approach to the Multiple Period Value at Risk Estimation | |
dc.type | 期刊篇目 | |
分類: | 第 12卷第1期 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。