完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChi Ming Wong
dc.contributor.authorLei Lam Olivia Ting
dc.date.accessioned2020-08-25T07:59:40Z-
dc.date.available2020-08-25T07:59:40Z-
dc.date.issued2016/02/01
dc.identifier.issnissn18190917
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2376/2720-
dc.description.abstractThis research focuses on methods for multiple period Value at Risk (VaR) estimation by utilizing some common approaches like RiskMetrics and empirical distribution and examining quantile regression. In a simulation study we compare the least square and quantile regression percentiles with the actual percentiles for different error distributions. We also discuss the method of selecting response and explanatory variables for the quantile regression approach. In an empirical study, we apply the three VaR estimation approaches to the aggregate returns of four major market indices. The results indicate that the quantile regression approach is better than the other two approaches.
dc.description.sponsorship逢甲大學
dc.language.iso英文
dc.relation.ispartofseries經濟與管理論叢
dc.relation.ispartofseries第12卷第1期
dc.subjectrisk measures
dc.subjectvalue at risk
dc.subjectquantile regression
dc.titleA Quantile Regression Approach to the Multiple Period Value at Risk Estimation
dc.type期刊篇目
分類:第 12卷第1期

文件中的檔案:
檔案 大小格式 
40099.pdf424.84 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。