完整後設資料紀錄
DC 欄位語言
dc.contributor.author蔡宸銘zh_TW
dc.contributor.author黃清風zh_TW
dc.date109學年度第二學期zh_TW
dc.date.accessioned2021-10-28T01:14:09Z-
dc.date.available2021-10-28T01:14:09Z-
dc.date.submitted2021-10-14-
dc.identifier.otherD0789394、D0789381zh_TW
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2376/4714-
dc.description.abstract中文摘要 隨著人工智慧的發展越趨進步,它也逐漸融入我們的生活當中。其中人臉辨識就是其中一項應用,可以應用在門禁管理,身分核對上等。雖然人工智慧在模型耗時的建立較久,但是有了模型便能快速地對影像進行辨識,藉以達到即時的功能。在本專題我們針對人臉辨識這項主題去進行實作與探討。我們利用鏡頭進行影像擷取,再將擷取到的影像藉由人工智慧建立的模型進行辨識。在辨識神經網路模型我們分別使用特徵學習以及深度學習兩種方法建立,並比較兩者結果的差異。最終我們能夠實現實時的人臉辨識系統。zh_TW
dc.description.abstractAbstract With the progress of artificial intelligence (AI), it gradually integrated into our life. Face recognition is one of AI applications. It can be applied in access control management, identification, and so on. Although the construction of an AI model is time-consuming, the image can be recognized quickly with the model to achieve real-time function. In this project, we have implemented face recognition by AI. We used the lens to capture images, and then recognized images with AI. In the artificial neural network, we used feature learning and deep learning, respectively, for face recognition. The difference of the two methods was also discussed. Finally, we have demonstrated a real-time face recognition system.zh_TW
dc.description.tableofcontents目次 一、序 p.4 二、影像擷取與人臉追蹤 p.5 三、特徵學習人臉辨識 p.6 四、深度學習人臉辨識 p.8 五、結論 p.14 六、參考文獻 p.14zh_TW
dc.format.extent15p.zh_TW
dc.language.isozhzh_TW
dc.rightsopenbrowsezh_TW
dc.subject人工智慧zh_TW
dc.subject人臉辨識zh_TW
dc.subject深度學習zh_TW
dc.subject機器學習zh_TW
dc.titleAI人臉辨識zh_TW
dc.title.alternativeFace recognition by Artificial Intelligencezh_TW
dc.typeUndergraReportzh_TW
dc.description.course數位光學造影技術zh_TW
dc.contributor.department光電科學與工程學系, 工程與科學學院zh_TW
dc.description.instructor劉榮平-
dc.description.instructor林昱志-
dc.description.programme光電科學與工程學系, 工程與科學學院zh_TW
分類:工科109學年度

文件中的檔案:
檔案 描述 大小格式 
D0789394109239.pdf1.73 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。