完整後設資料紀錄
DC 欄位語言
dc.contributor.author林宏展zh_TW
dc.contributor.author林長毅zh_TW
dc.contributor.author林紘郁zh_TW
dc.contributor.author余俊傑zh_TW
dc.date111 學年度第二學期zh_TW
dc.date.accessioned2023-10-13T02:17:45Z-
dc.date.available2023-10-13T02:17:45Z-
dc.date.submitted2023-10-13-
dc.identifier.otherD0837808、D0842954、D1076332、D1031329zh_TW
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2376/4861-
dc.description.abstract雞蛋在臺灣人的日常飲食中扮演著重要的營養供應角色,因此,維持雞蛋價格的穩定性相當重要。本研究從多個來源蒐集2010 年11月1日至2023年4月30日之蛋價資料,缺漏部分以插值法補足。我們蒐集影響蛋價的相關因子,建立三個蛋價預測模型:(1)多元迴歸(Multiple Regression),(2)ARIMAX (Autoregressive Integrated Moving Average with Explanatory Variables Algorithm),(3)長短期記憶(Long Short Short-Term Memory,LSTM)之類神經網路模型。我們以標準的機器學習方法進行訓練和預測,結果顯示,在多元迴歸、ARIMAX和LSTM 模型預測之均方根差(Root-Mean-Square Error,RMSE),分別為9.2412、9.3654和3.0985元。因此,LSTM表現遠遠優於另外兩者,較能捕捉2023年台灣較為異常且漲幅較大的蛋價。本研究提供一個且可行的LSTM 的架構,供後續研究人員或是政府單位建立模型之參考,並提早制定相關措施。zh_TW
dc.description.abstractEggs assume a significant role in the daily dietary intake of the Taiwanese population, emphasizing their crucial nutritional contribution. Consequently, maintaining stable egg prices holds substantial importance. This study amalgamated egg price data from diverse sources spanning November 1, 2010, to April 30, 2023, with interpolated values to address gaps. Pertinent factors affecting egg prices were collected to establish three egg price forecasting models: (1) Multiple Regression, (2) ARIMAX (Autoregressive Integrated Moving Average with Explanatory Variables Algorithm), and (3) Long Short-Term Memory (LSTM) neural network model. Training and prediction were conducted employing standard machine learning methodologies. The outcomes revealed root-mean-square errors (RMSE) for egg price prediction in multiple regression, ARIMAX, and LSTM models as 9.2412, 9.3654, and 3.0985 units, respectively. Consequently, LSTM outperformed the other two models, effectively capturing the pronounced and larger-scale egg price anomalies expected in Taiwan for the year 2023. This research furnishes a practicable LSTM framework, serving as a reference for future researchers or governmental entities aiming to construct models and implement anticipatory measures.zh_TW
dc.description.tableofcontents中文摘要 1 Abstract 2 目次 3 一、 研究動機與目的 4 二、 文獻探討 8 三、 變數定義與資料預處理 10 四、 Multiple Regression Model 18 五、 ARIMAX Model 22 六、 Long Short-Term Memory (LSTM) Model 27 七、 結論與未來展望 34 參考資料 37目 次 中文摘要 1 Abstract 2 目次 3 一、 研究動機與目的 4 二、 文獻探討 8 三、 變數定義與資料預處理 10 四、 Multiple Regression Model 18 五、 ARIMAX Model 22 六、 Long Short-Term Memory (LSTM) Model 27 七、 結論與未來展望 34 參考資料 37zh_TW
dc.format.extent37zh_TW
dc.language.isozhzh_TW
dc.rightsopenbrowsezh_TW
dc.subject台灣蛋價zh_TW
dc.subject多元迴歸模型zh_TW
dc.subjectARIMAX模型zh_TW
dc.subject長短期記憶模型zh_TW
dc.subject價格預測zh_TW
dc.subjectTaiwan Egg Priceszh_TW
dc.subjectMultiple Regression Modelzh_TW
dc.subjectARIMAX Modelzh_TW
dc.subjectLong Short-Term Memory Modelzh_TW
dc.subjectPrice Forecastingzh_TW
dc.title預測台灣蛋價的模型實作: 時間序列分析與類神經網路zh_TW
dc.title.alternativeModel Implementation for Forecasting Egg Prices in Taiwan: Time Series Analysis and Neural Networkszh_TW
dc.typeUndergraReportzh_TW
dc.description.course資料科學導論:Python實踐zh_TW
dc.contributor.department經濟學系, 商學院zh_TW
dc.contributor.department工業工程與系統管理學系, 工程與科學學院zh_TW
dc.contributor.department資訊工程學系, 資訊電機學院zh_TW
dc.description.instructor何, 思賢-
dc.description.programme經濟學系, 商學院zh_TW
分類:商111學年度

文件中的檔案:
檔案 描述 大小格式 
1112-13.pdf3.59 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。