完整後設資料紀錄
DC 欄位語言
dc.contributor.author洪佩筠zh_TW
dc.contributor.author陳柔蓁zh_TW
dc.contributor.author賴欣妤zh_TW
dc.contributor.author陳筱茹zh_TW
dc.date112學年度第二學期zh_TW
dc.date.accessioned2024-10-18T07:43:53Z-
dc.date.available2024-10-18T07:43:53Z-
dc.date.submitted2024-10-18-
dc.identifier.otherD1043856、D1089182、D1089178、D1089165zh_TW
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2376/4946-
dc.description.abstract摘要 隨著過去幾年來COVID-19疫情成為國際關注的突發公共衛生事件後,這場規模極大的疫情傳染,讓全球認識到傳染病傳播的危險性和對社會所造成的深遠影響。然而除了COVID-19疫情之外,流感是一種持續存在且具有潛在爆發風險的傳染疾病,是一個更值得探討的公共衛生議題。因此,本文希望透過此專題研究,深入了解臺灣2010年至2019年間,每週類流感健保就診人次的趨勢,以及預測在沒有其他疫情影響之下的流感就診人數變化。本文使用衛生福利部疾病管制署在政府資料開放平台所提供的2010年1月至2019年12月每週類流感健保門診及住院就診人次統計資料,進行時間序列的建模與預測,並考慮時間序列迴歸模型、ARIMA模型及指數平滑法三種不同模型方法,利用 Mean Square Error (MSE)、Root Mean Square Error (RMSE)、Mean Absolute Percent Error (MAPE)、Mean Absolute Error (MAE)和R平方等五個指標來比較三種不同方法的預測效果與解釋能力,以選出最佳的預測模型。最後結果顯示,ARIMA的預測表現最佳,可做為本研究最終預測模型,且從ARIMA模型可發現上一週的類流感就診人數與本週呈負相關,而與年的下一週的類流感就診人數與本週呈正相關。此外,還預測2020年1月至2020年12月在沒有COVID-19發生的情況下每週類流感就診人次分布變化。zh_TW
dc.description.abstractAbstract As the COVID-19 epidemic has become a public health emergency of international concern in the past few years, this extremely large-scale epidemic has made the world aware of the dangers of the spread of infectious diseases and its profound impact on society. However, in addition to the COVID-19 epidemic, influenza is an infectious disease that persists and has potential outbreak risks, and is a public health issue worthy of discussion. Therefore, this article hopes to use this special study to gain an in-depth understanding of the trend in the number of weekly influenza-like health insurance visits in Taiwan from 2010 to 2019, and to predict the changes in the number of influenza-like visits without the impact of other epidemics. This article uses the statistical data on weekly influenza-like health insurance outpatient and inpatient visits from January 2010 to December 2019 provided by the Department of Disease Control and Prevention of the Ministry of Health and Welfare on the government information open platform, to conduct time series modeling and prediction, and considers time Three different model methods: sequence regression model, ARIMA model and exponential smoothing method, using Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Percent Error (MAPE), Mean Absolute Error (MAE) and R-squared, etc. Five indicators are used to compare the prediction effects and explanatory capabilities of three different methods to select the best prediction model. The final results show that ARIMA has the best prediction performance and can be used as the final prediction model of this study. From the ARIMA model, it can be found that the number of influenza-like hospitalizations in the previous week is negatively correlated with this week, and is negatively correlated with the number of influenza-like hospitalizations in the next week of the year. The number of people is positively correlated with the week. In addition, changes in the distribution of weekly influenza-like hospital visits from January 2020 to December 2020 in the absence of COVID-19 were also predicted.zh_TW
dc.description.tableofcontents目次 第一章 緒論 6 第一節 研究背景與動機 6 第二節 研究目的與研究問題 6 第三節 資料敘述 7 第四節 研究方法 7 第二章 文獻探討 8 第三章 分析結果 9 第一節 敘述統計 9 第二節 資料分析結果 9 (一) 時間序列迴歸模型(Time series regression model) 10 1. 模型配適 10 2. 參數估計 11 3. 診斷分析 14 4. 預測結果 16 (二) ARIMA模型 18 1. 模型配適 19 2. 參數估計 20 3. 殘差檢定 21 4. 預測結果 22 (三) 指數平滑法模型(Exponential smoothing method) 24 1. 模型配適 24 2. 參數估計 25 3. 殘差檢定 25 4. 預測結果 27 第三節 預測結果比較 29 第四章 結論與建議 30 第一節 結論 30 第二節 建議 30zh_TW
dc.format.extent31p.zh_TW
dc.language.isozhzh_TW
dc.rightsopenbrowsezh_TW
dc.subject流感zh_TW
dc.subjectARIMA模型zh_TW
dc.subject指數平滑法zh_TW
dc.subject時間序列迴歸模型zh_TW
dc.subjectInfluenzazh_TW
dc.subjectARIMA modelzh_TW
dc.subjectExponential smoothing methodzh_TW
dc.subjectTime series regression modelzh_TW
dc.title流感之巔:探索病毒的盛衰潮流zh_TW
dc.title.alternativeFlu Peaks:Exploring the rise and fall of viruseszh_TW
dc.typeUndergraReportzh_TW
dc.description.course預測分析zh_TW
dc.contributor.department統計學系, 商學院zh_TW
dc.description.instructor劉, 峰旗-
dc.description.programme統計學系, 商學院zh_TW
分類:商112學年度

文件中的檔案:
檔案 描述 大小格式 
1122-40.pdf2.17 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。