題名: | MoS₂摻雜BN奈米管進行光催化產氫性質之理論研究 |
其他題名: | DFT Studies of the Photocatalytic Properties of MoS2‑Doped Boron Nitride Nanotubes for Hydrogen Production |
作者: | 江上豪 |
關鍵字: | 二硫化鉬 水解反應 光催化產氫 密度泛函理論 氮化硼奈米管 Boron-Nitride Nanotubes DFT study Hydrolysis Molybdenum Disulfide (MoS₂) Photocatalysis |
系所/單位: | 材料科學與工程學系, 工程與科學學院 |
摘要: | 中文摘要
光觸媒是一種在光照下利用光能引發化學反應的催化劑,能分解污染物、除臭和凈化水質,是具潛力的綠色環保材料。隨著化石燃料對環境的威脅加劇,氫能源研發備受關注,其中水分解光觸媒被視為有效的氫氣生產方法,通過光催化劑吸收光能,將水分解為氫氣和氧氣,過程簡單且環保。本研究使用氮化硼奈米管摻雜二硫化鉬(MoS₂-Doped Boron Nitride Nanotube)作為光催化劑材料。氮化硼奈米管具有優異的機械性能和熱穩定性,而二硫化鉬因其獨特的光電性質和高效光催化活性而受到廣泛研究。通過結合這兩種材料,期望提升光催化劑的性能。使用密度泛函理論進行詳細計算機模擬,首先優化摻雜後的結構,確保其穩定性。接著分析能帶結構,發現摻雜二硫化鉬後材料的能帶隙適合光催化分解水反應,且在機械性能、光電性質和光吸收性能上表現出色。未來研究將優化材料制備方法,提升光催化效率;研究實際環境下的光催化性能,評估大規模應用的可行性,為可持續發展目標做出重要貢獻。 Abstract Photocatalysts, as green environmental materials, hold immense development potential. With the increasing threat of fossil fuels to the environment, finding alternative energy sources has become urgent. Photocatalysts initiate chemical reactions under light irradiation, converting light energy into chemical energy. They decompose pollutants, deodorize, and purify water. Hydrogen energy development is promising, with photocatalytic water splitting being an effective method. This approach uses photocatalysts to absorb light energy, decomposing water into hydrogen and oxygen, making it simple and environmentally friendly.This study employed MoS₂-Doped Boron Nitride Nanotubes as photocatalyst materials. Boron nitride nanotubes have excellent mechanical properties and thermal stability, while molybdenum disulfide is known for its unique photoelectric properties and efficient photocatalytic activity. Combining these materials aims to enhance photocatalyst performance. We conducted computational simulations, optimizing the structure of MoS₂-Doped Boron Nitride Nanotubes for stability and analyzing its band structure, finding a suitable bandgap for photocatalytic water splitting. The material showed excellent mechanical properties, photoelectric properties, and light absorption performance, indicating its potential as an efficient photocatalyst. Future research will optimize material preparation processes to enhance efficiency, study performance under actual conditions for large-scale application feasibility, and explore other doping elements or composite materials to improve performance further. Photocatalyst technology, as a green technology, has broad application prospects. Continuous research and optimization will expand their applications in environmental protection and renewable energy. With technological advancements, photocatalysts will play a significant role in future energy structures, contributing to sustainable development goals. |
學年度: | 112學年度第二學期 |
開課老師: | 駱, 榮富 |
課程名稱: | 專題討論 |
系所: | 材料科學與工程學系, 工程與科學學院 |
分類: | 工科112學年度 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
1122-36.pdf | 764.8 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。