完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Tsai, Hung-Ming | |
dc.contributor.author | Lin, Cheng-Jian | |
dc.contributor.author | Chen, Po-Yueh | |
dc.date.accessioned | 2009-06-02T06:37:31Z | |
dc.date.accessioned | 2020-05-25T06:43:23Z | - |
dc.date.available | 2009-06-02T06:37:31Z | |
dc.date.available | 2020-05-25T06:43:23Z | - |
dc.date.issued | 2006-10-11T07:56:26Z | |
dc.date.submitted | 2004-12-15 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/1012 | - |
dc.description.abstract | In this paper, we propose a wavelet neural network (WNN) for nonlinear time-invariant and time-varying channel equalizers. The WNN model is a four-layer structure which is comprised of an input layer, a wavelet layer, a product layer, and an output layer. A hybrid learning algorithm consists of structure and parameter learning algorithms. The structure learning is based on a self-clustering algorithm (SCA). It not only considers the original dilation and translation but also consider every translation and dilation’s variation of dimension in the input data. The parameter learning is based on a simultaneous perturbation method for adjusting the parameters. Computer simulation results show that the bit error rate of the WNN equalizer is close to that of the optimal equalizer. | |
dc.description.sponsorship | 大同大學,台北市 | |
dc.format.extent | 6p. | |
dc.format.extent | 493330 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 2004 ICS會議 | |
dc.subject | Cluster | |
dc.subject | wavelet neural network | |
dc.subject | digital communication | |
dc.subject | equalizer | |
dc.subject.other | Artificial Intelligence | |
dc.title | A Clustering Technique for Digital Communication Channel Equalization Using Wavelet Neural Networks | |
分類: | 2004年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002004000032.pdf | 481.77 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。