完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Li, Cheng-Wen | |
dc.contributor.author | Yang, Yen-Ju | |
dc.date.accessioned | 2009-06-02T06:40:15Z | |
dc.date.accessioned | 2020-05-25T06:41:58Z | - |
dc.date.available | 2009-06-02T06:40:15Z | |
dc.date.available | 2020-05-25T06:41:58Z | - |
dc.date.issued | 2006-10-11T07:58:42Z | |
dc.date.submitted | 2004-12-15 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/1020 | - |
dc.description.abstract | Support Vector Machines (SVM) have become increasingly popular tools for many data mining tasks. It can be used in classification, novelty detection, regression, and clustering. It has been successfully applied to a lot of applications about text categorization, handwritten character recognition, medical diagnosis, bioinformatics and database marketing. However, the application of SVM to large datasets is limited because of the high computational cost involved in solving quadratic programming problem arising in training. To solve this problem, this research tried to develop a heuristic model to reduce the computational and space cost. The model is composed of three parts. 1. Finding the principal attributes by PCA. 2. Error-tolerance constraints for lossy compression. 3. Replaced values computation and similar records deletion. Then we apply SVM on the compressed database. The experimental results have proved that the heuristic model will reduce the input features to save the memory and the computation time. And the accuracy is acceptable even improved. | |
dc.description.sponsorship | 大同大學,台北市 | |
dc.format.extent | 6p. | |
dc.format.extent | 282501 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 2004 ICS會議 | |
dc.subject | Data Mining | |
dc.subject | Machine Learning | |
dc.subject | SVM | |
dc.subject | Heuristic Model | |
dc.subject.other | Artificial Intelligence | |
dc.title | Using Heuristic Model to Improve the Efficiency of Support Vector Machines | |
分類: | 2004年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002004000063.pdf | 275.88 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。