完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chen, Ching-Han | |
dc.contributor.author | Chu, Chia-Te | |
dc.date.accessioned | 2009-06-02T06:40:07Z | |
dc.date.accessioned | 2020-05-25T06:41:47Z | - |
dc.date.available | 2009-06-02T06:40:07Z | |
dc.date.available | 2020-05-25T06:41:47Z | - |
dc.date.issued | 2006-10-11T07:59:38Z | |
dc.date.submitted | 2004-11-15 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/1022 | - |
dc.description.abstract | This paper proposes the combination multiple facial feature extraction methods and probabilistic neural network for facial recognition. Firstly, we use horizontal projection of 2-D image to obtain accumulated energy profile signal. Secondly, we obtain the statistical distribution of facial gray images. Finally, we adopt wavelet transform to extract low frequency coefficients from 1-D energy profile signal and statistical distribution of face gray level values as feature vectors, which is applied with probabilistic neural network in facial identification and facial matching. Thus, the proposed method is evaluated on the ORL face database for face recognition. Besides, the face recognition system is also built on PC, and it is evaluated on real data set by the proposed algorithm. The experiment results show that the proposed method possesses the excellent performance. Because of low complexity, it is also suitable for a hardware-friendly and resource-constrained embedded environment. | |
dc.description.sponsorship | 大同大學,台北市 | |
dc.format.extent | 6p. | |
dc.format.extent | 324354 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 2004 ICS會議 | |
dc.subject | face recognition | |
dc.subject | wavelet transform | |
dc.subject | probabilistic neural network | |
dc.subject.other | Artificial Intelligence | |
dc.title | Combining Multiple Features for High Performance Face Recognition System | |
分類: | 2004年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002004000065.pdf | 316.75 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。