完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Ruey-Maw
dc.contributor.authorLo, Shih-Tang
dc.contributor.authorHuang, Yueh-Min
dc.contributor.authorWang, Chuin-Mu
dc.date.accessioned2009-06-02T06:40:20Z
dc.date.accessioned2020-05-25T06:42:06Z-
dc.date.available2009-06-02T06:40:20Z
dc.date.available2020-05-25T06:42:06Z-
dc.date.issued2006-10-11T08:00:12Z
dc.date.submitted2004-12-15
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/1023-
dc.description.abstractNeural network using competitive learning rule provides a highly effective method of attaining a sound solution and is capable of simplifying the network complexity. Intrinsically, the competitive scheme is used to solve fully utilized real-time scheduling problem. This study extends the competitive Hopfield neural network to solve both non-fully and fully utilized multiprocessor real-time scheduling problems with execution time and deadline constraints. Extra “slack neurons” added on to the neural network topology to represent pseudo job were applied to ease the non-fully utilized situation and facilitate solving the problem. Simulation results confirm that the competitive neural network imposed on the proposed energy function corresponding neural networks with slack neurons integrated ensures an appropriate approach of solving this class of real-time scheduling problems of single processor or multiprocessor system.
dc.description.sponsorship大同大學,台北市
dc.format.extent6p.
dc.format.extent306408 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2004 ICS會議
dc.subjectReal-time scheduling
dc.subjectSlack neuron
dc.subjectCompetitive learning
dc.subject.otherArtificial Intelligence
dc.titleSolve Multiprocessor Real-Time Scheduling Using Competitive Slack Neural Networks
分類:2004年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002004000067.pdf299.23 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。