題名: A Genetic Functional-Link Network for Camera Movement Classification
作者: Chen, C. L. Philip
Bhumireddy, Chandrakumar
Darvemula, Pavan K.
關鍵字: Camera movement classification
Functional-link networks
Genetic Algorithms
MPEG
期刊名/會議名稱: 2004 ICS會議
摘要: In this paper a Genetic Functional-Link Network (GFLN) that employs Gaussian functions in a feedforward functional-link network (FLN) for classifying camera movement for compressed videos is proposed. The parameters in GFLN are adjusted using genetic evolutionary approach. GFLN provides feature selection capability by selecting the links between input layer and functional nodes dynamically. Genetic coding is used for combining evolution of weights and Gaussian parameters in a single chromosome. Seven categories of camera movement: static, pan-right, pan-left, tilt-up, tilt-down, zoom-in, and zoomout decoded from the MPEG-1 video stream are used for neural classification. Our aim is to rapidly extract and process motion vector information from MPEG video without full frame decompression. Video streams with aforementioned classes of camera movement have been successfully classified.
日期: 2006-10-11T08:05:46Z
分類:2004年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002004000121.pdf565.82 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。