題名: Hyperspectral Image Classification Using Dynamic Classifier Selection with Multiple Feature Extractions
作者: Pai, Chia-Hao
Kuo, Bor-Chen
Sheu, Tian-Wei
Yang, Jinn-Min
Ko, Li-Wei
關鍵字: Feature extraction
Dynamic classifier selection
Multiple classifier system
期刊名/會議名稱: 2004 ICS會議
摘要: Dynamic classifier selection is a strategy in multiple classifier system design. Feature extraction is one of the important procedures for mitigate Hughes phenomenon in hyperspectral image classification. Most papers have discussed the potential discriminatory information between different classifiers. In this paper, we try to exploit the discriminatory information extracted by different feature extractions for improving classification accuracy. Information is then combined by using a dynamic classifier selection strategy based on local information to make a consistency decision. This paper provides another thinking of constructing a multiple classifier system without additional classifier design by using multiple feature extraction.
日期: 2006-10-11T08:07:09Z
分類:2004年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002004000128.pdf243.63 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。