完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Bao Rong
dc.contributor.authorTsai, Shiou Fen
dc.date.accessioned2009-06-02T06:37:52Z
dc.date.accessioned2020-05-25T06:42:47Z-
dc.date.available2009-06-02T06:37:52Z
dc.date.available2020-05-25T06:42:47Z-
dc.date.issued2006-10-11T08:08:32Z
dc.date.submitted2004-12-15
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/1048-
dc.description.abstractA support vector regression (SVR) is very useful on modeling the predictor for forecasting complex time series. However, SVR cannot avoid volatility clustering effect and thus worst its prediction accuracy. NGARCH(p,q) is utilized for dealing with the problem of volatility clustering or fat-tail effect to best fit the modeling. Therefore, SVR with nonlinear conditional heteroscedasticity is introduced herein in order for dealing with volatility clustering phenomenon while it is applied to forecasting complex financial indexes, e.g. stock price indexes or future trading indexes. This proposed method can get the satisfactory results because of improving its generalization.
dc.description.sponsorship大同大學,台北市
dc.format.extent5p.
dc.format.extent344806 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2004 ICS會議
dc.subjectSupport vector regression
dc.subjectNGARCH(p,q)
dc.subjectHeteroscedasticity
dc.subject.otherArtificial Intelligence
dc.titleSVR with Nonlinear Conditional Heteroscedasticity
分類:2004年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002004000153.pdf336.72 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。