完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFu, JuiHis
dc.contributor.authorHuang, ChihHsiung
dc.contributor.authorLee, SingLing
dc.date.accessioned2009-08-23T04:50:57Z
dc.date.accessioned2020-05-29T06:38:36Z-
dc.date.available2009-08-23T04:50:57Z
dc.date.available2020-05-29T06:38:36Z-
dc.date.issued2008-07-22T07:02:30Z
dc.date.submitted2007-12-20
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/10757-
dc.description.abstractIn this paper, the technique of Support Vector Machine has been used to deal with multi-class Chinese text classification. Several data retrieving techniques including word segmentation, term weighting and feature extraction are adopted to implement our system. To improve classification accuracy, two revised methods, self-learning and error filtering, for straight forward SVM results are proposed. The method of self-learning uses misclassified documents to retrain classification system, and the method of error filtering filters out possibly misclassified documents by analyzing the decision values from SVM. The experiment result on real-world data set shows the accuracy of basic SVM classification system is about 79% and the accuracy of improved SVM classification system can reach 83%.
dc.description.sponsorship亞洲大學資訊學院, 台中縣霧峰鄉
dc.format.extent9p.
dc.relation.ispartofseries2007 NCS會議
dc.subjectDocument Classification, Support Vector Machine (SVM)
dc.subjectError Filtering
dc.subjectMulti-Class SVM
dc.subject.otherIntelligent Information Retrieval
dc.titleA Multi-Class SVM Classification System Based on Methods of Self-Learning and Error Filtering
分類:2007年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
CE07NCS002007000008.pdf548.98 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。