完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Kueng, Tz-Liang | |
dc.contributor.author | Liang, Tyne | |
dc.contributor.author | Tan, Jimmy J.M. | |
dc.date.accessioned | 2009-08-23T04:50:27Z | |
dc.date.accessioned | 2020-05-29T06:39:11Z | - |
dc.date.available | 2009-08-23T04:50:27Z | |
dc.date.available | 2020-05-29T06:39:11Z | - |
dc.date.issued | 2008-07-22T07:15:55Z | |
dc.date.submitted | 2007-12-20 | |
dc.identifier.uri | http://dspace.fcu.edu.tw/handle/2377/10761 | - |
dc.description.abstract | A k-container Ck(u; v) of a graph G is a set of k internally vertex-disjoint paths joining vertices u and v. It becomes a k*-container if every vertex of G is passed by a certain path of Ck(u; v). A graph G is said to be k*-connected if there exists a k*-container between any two vertices of G. A graph G with connectivity · is super spanning connected if it is i*-connected for every 1≦ i ≦k. A bipartite graph G is k*-laceable if there exists a k*-container between any two vertices u and v from different partite sets of G. A bipartite graph G with connectivity k is super spanning laceable if it is i*-laceable for all 1≦ i ≦k. In this paper, we show the n-dimensional binary wrapped butterfly graph is super spanning connected (resp. super spanning laceable) if n is odd (resp. even). | |
dc.description.sponsorship | 亞洲大學資訊學院, 台中縣霧峰鄉 | |
dc.format.extent | 18p. | |
dc.relation.ispartofseries | 2007 NCS會議 | |
dc.subject | Super spanning laceable | |
dc.subject | Container | |
dc.subject | Butterfly graph | |
dc.subject | Hamil- tonian connected | |
dc.subject | Hamiltonian laceable | |
dc.subject | Super spanning connected | |
dc.subject.other | Interconnection Networks | |
dc.title | On the Super Spanning Properties of Binary Wrapped Buttefly Graphs | |
分類: | 2007年 NCS 全國計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
CE07NCS002007000079.pdf | 1.05 MB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。