完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Shyue-Liang
dc.contributor.authorHong, Tzung-Pei
dc.date.accessioned2009-08-23T04:50:40Z
dc.date.accessioned2020-05-29T06:39:34Z-
dc.date.available2009-08-23T04:50:40Z
dc.date.available2020-05-29T06:39:34Z-
dc.date.issued2008-07-23T01:43:06Z
dc.date.submitted2007-12-20
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/10768-
dc.description.abstractFor a given recommended item, a collaborative recommendation association rule set is the smallest association rule set that makes the same recommendation as the entire association rule set by confidence priority. In this work, we propose an efficient one-scan sanitization algorithm to hide collaborative recommendation association rules. To hide association rules, previously proposed algorithms based on Apriori approach usually require multiple scanning of database to calculate the supports of the large itemsets. We propose here using a pattern-inversion tree to store related information so that only one scan of database is required. Numerical experiments show that the proposed algorithm out performs previous algorithms, with similar side effects.
dc.description.sponsorship亞洲大學資訊學院, 台中縣霧峰鄉
dc.format.extent7p.
dc.relation.ispartofseries2007 NCS會議
dc.subjectprivacy preserving,
dc.subject隱私保護
dc.subjectdata mining
dc.subjectcollaborative recommendation
dc.subjectassociation rule
dc.subject資料探勘
dc.subject協同推薦
dc.subject關聯規則
dc.subject.otherKnowledge Mining and Management
dc.titleOne-Scan Sanitization of Collaborative Recommendation Association Rules
dc.title.alternative協同推薦關聯規則之一次掃瞄清除
分類:2007年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
CE07NCS002007000036.pdf132 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。