完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Wang, Shyue-Liang | |
dc.contributor.author | Hong, Tzung-Pei | |
dc.date.accessioned | 2009-08-23T04:50:40Z | |
dc.date.accessioned | 2020-05-29T06:39:34Z | - |
dc.date.available | 2009-08-23T04:50:40Z | |
dc.date.available | 2020-05-29T06:39:34Z | - |
dc.date.issued | 2008-07-23T01:43:06Z | |
dc.date.submitted | 2007-12-20 | |
dc.identifier.uri | http://dspace.fcu.edu.tw/handle/2377/10768 | - |
dc.description.abstract | For a given recommended item, a collaborative recommendation association rule set is the smallest association rule set that makes the same recommendation as the entire association rule set by confidence priority. In this work, we propose an efficient one-scan sanitization algorithm to hide collaborative recommendation association rules. To hide association rules, previously proposed algorithms based on Apriori approach usually require multiple scanning of database to calculate the supports of the large itemsets. We propose here using a pattern-inversion tree to store related information so that only one scan of database is required. Numerical experiments show that the proposed algorithm out performs previous algorithms, with similar side effects. | |
dc.description.sponsorship | 亞洲大學資訊學院, 台中縣霧峰鄉 | |
dc.format.extent | 7p. | |
dc.relation.ispartofseries | 2007 NCS會議 | |
dc.subject | privacy preserving, | |
dc.subject | 隱私保護 | |
dc.subject | data mining | |
dc.subject | collaborative recommendation | |
dc.subject | association rule | |
dc.subject | 資料探勘 | |
dc.subject | 協同推薦 | |
dc.subject | 關聯規則 | |
dc.subject.other | Knowledge Mining and Management | |
dc.title | One-Scan Sanitization of Collaborative Recommendation Association Rules | |
dc.title.alternative | 協同推薦關聯規則之一次掃瞄清除 | |
分類: | 2007年 NCS 全國計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
CE07NCS002007000036.pdf | 132 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。