完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Tsun-Chen
dc.contributor.authorLiu, Ru-Sheng
dc.contributor.authorLiu, Chen-Chung
dc.contributor.authorChen, Shu-Yuan
dc.contributor.authorChen, Chieh-Yu
dc.date.accessioned2009-06-02T06:39:47Z
dc.date.accessioned2020-05-25T06:41:28Z-
dc.date.available2009-06-02T06:39:47Z
dc.date.available2020-05-25T06:41:28Z-
dc.date.issued2006-10-12T08:01:47Z
dc.date.submitted2004-12-15
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/1088-
dc.description.abstractThe gene expression levels measured from microarray spots vary between patients with the same type of tumor. This reduces the performance of microarray classification, especially when the microarray dataset has few samples. Here, we introduce the grey model GM(1,1) of the grey system theory for modeling gene expression patterns of small samples to eliminate variations. To evaluate the application of GM(1,1), we have combined GM(1,1) with GA/MLHD approach to solve the problem of multi-class classification. The GM(1,1)- GA/MLHD model was tested on two published microarray datasets: (1) NCI60 cancer cell lines and (2) the GCM dataset. The experimental results show that the GM(1,1) gave gene expression patterns with less variations and helped the MLHD classifier to improve classification accuracy over the method of GA/MLHD, but they also outperformed many class prediction approaches.
dc.description.sponsorship大同大學,台北市
dc.format.extent7p.
dc.format.extent370227 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2004 ICS會議
dc.subjectGM(1,1)
dc.subjectmicroarray
dc.subjectgenetic algorithm
dc.subjectclassification
dc.subjecttumor class
dc.subject.otherBioinformatics
dc.titleReducing the Variation of Gene Expression Patterns: A Grey Model Approach Applied to Microarray Data Classification
分類:2004年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002004000207.pdf361.55 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。