完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Chang-Shing
dc.contributor.authorWang, Mei-Hui
dc.contributor.authorHsu, Chin-Yuan
dc.date.accessioned2009-08-23T04:44:02Z
dc.date.accessioned2020-05-25T06:51:28Z-
dc.date.available2009-08-23T04:44:02Z
dc.date.available2020-05-25T06:51:28Z-
dc.date.issued2008-11-11T07:06:03Z
dc.date.submitted2007-04-01
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/10978-
dc.description.abstractThis paper presents an ontological intelligent agent to remove impulse noise from highly corrupted images. It contains an image noise ontology to represent the image noise knowledge for the agent, a fuzzy inference mechanism for noise detection and removal, and an intelligent learning process for automatically generating the fuzzy numbers of the agent. The working environment for the intelligent agent is defined and the image noise ontology referred by the fuzzy inference mechanism is utilized to perform the task of noise removal. Then, using orthogonal array and factor analysis, a genetic algorithm is applied to the intelligent learning process. Finally, the fuzzy numbers of the image noise ontology are adjusted via the intelligent learning process to increase the performance of the intelligent agent. Experimental results show that the proposed approach can achieve better results than the state-of-the-art filters based on the criteria of Mean-Absolute-Error and Mean-Square-Error. Besides, on the subjective evaluation of those filtered images, the proposed approach can also generate a higher quality of global restorations.
dc.format.extent26P.
dc.relation.isversionofVol18
dc.relation.isversionofNo1
dc.subjectOntology
dc.subjectFuzzy Inference
dc.subjectGenetic Learning
dc.subjectImage Processing
dc.subjectIntelligent Agent
dc.titleOntological Intelligent Agent for Impulse Noise Removal
分類:Journal of Computers第18卷

文件中的檔案:
檔案 描述 大小格式 
JOC_18_1_9.pdf2.76 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。