完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Lien-Chin
dc.contributor.authorLin, Yu-Chia
dc.contributor.authorArita, Masanori
dc.contributor.authorTseng, Vincent S.
dc.date.accessioned2009-06-02T07:05:47Z
dc.date.accessioned2020-05-25T06:48:52Z-
dc.date.available2009-06-02T07:05:47Z
dc.date.available2020-05-25T06:48:52Z-
dc.date.issued2009-02-11T07:29:29Z
dc.date.submitted2009-02-11
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/11179-
dc.description.abstractThe gene expression microarray is a popular technique to discover significant marker genes for different experimental design. However, missing value may occur during experimental operation or image analysis phase. Effective missing value estimation methods have been proposed to solve the problem. But, most imputation algorithms only consider the expression data in selection process. In this paper, we proposed a novel method, namely Protein and Gene Annotation K Nearest Neighbors (PGAKNN), to impute missing value of microarray gene expression data by using external biological information, like Gene Ontology Semantic Similarity and Ontology-based Protein Similarity between two genes. The experimental results show that PGAKNN provides a higher accuracy of missing value estimation on the two real yeast cDNA microarray datasets.
dc.description.sponsorship淡江大學,台北縣
dc.format.extent6p.
dc.relation.ispartofseries2008 ICS會議
dc.subjectData Mining
dc.subjectMicroarray
dc.subjectGene Expression Analysis
dc.subjectMissing Value Imputation
dc.subject.otherMedical amd Bio-Informatics
dc.titleA Novel Approach for Handling Missing Values in Microarray Data
分類:2008年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002008000108.pdf171.28 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。