完整後設資料紀錄
DC 欄位語言
dc.contributor.authorMizugai, Hiroshi
dc.contributor.authorPaik, Incheon
dc.contributor.authorKanemoto, Shigeru
dc.date.accessioned2009-06-02T07:05:32Z
dc.date.accessioned2020-05-25T06:48:36Z-
dc.date.available2009-06-02T07:05:32Z
dc.date.available2020-05-25T06:48:36Z-
dc.date.issued2009-02-12T02:15:47Z
dc.date.submitted2009-02-12
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/11205-
dc.description.abstractIn feature selection of text categorization, there are methods which handle word sense disambiguation by extracting synonymy and polysemy among words in documents. One of the methods utilizes latent topics underlying documents by using a topic model. PLSA and LDA have been proposed as representative models. In this paper, two features which include both TF-IDF and the latent topic values which extracted automatically from topic models were utilized for text categorization using AdaBoost. Then, the performances were compared with the ones of only TF-IDF features. As a result, this study evaluates effectiveness and weakness of the augmented features.
dc.description.sponsorship淡江大學,台北縣
dc.format.extent6p.
dc.relation.ispartofseries2008 ICS會議
dc.subjectMachine Learning
dc.subjectText Categorization
dc.subjectLatent Topics
dc.subjectAdaBoost
dc.subject.otherArtificial Intelligence
dc.titleText Categorization Using Latent Topics as Additional Features
分類:2008年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002008000154.pdf181.08 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。