完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSadeghi, Zahra
dc.contributor.authorTeshnehlab, Mohammad
dc.contributor.authorPedram, Mir Mohsen
dc.date.accessioned2009-06-02T07:07:09Z
dc.date.accessioned2020-05-25T06:47:45Z-
dc.date.available2009-06-02T07:07:09Z
dc.date.available2020-05-25T06:47:45Z-
dc.date.issued2009-02-12T02:23:25Z
dc.date.submitted2009-02-12
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/11207-
dc.description.abstractIn this article a new method of clustering with artificial ants is proposed. Unlike conventional ant clustering algorithms the true number of clusters must be provided for this algorithm in advance. Clustering is done using groups of ants which are as many as the number of clusters. The goal of each group is to collect members of one cluster. Two new functions are defined inspired from existing pick up and drop down probability functions which are used for inserting and removing loads of ants. Experimental results of the method demonstrated better accuracy in comparison to k-means and ant based clustering algorithm.
dc.description.sponsorship淡江大學,台北縣
dc.format.extent6p.
dc.relation.ispartofseries2008 ICS會議
dc.subjectant based clustering
dc.subjectant colony optimization
dc.subject.otherArtificial Intelligence
dc.titleK-Ants Clustering- A New Strategy Based on Ant Clustering
分類:2008年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002008000156.pdf70.21 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。