完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWong, Ching-Chang
dc.contributor.authorLeu, Chun-Liang
dc.date.accessioned2009-06-02T07:06:04Z
dc.date.accessioned2020-05-25T06:49:14Z-
dc.date.available2009-06-02T07:06:04Z
dc.date.available2020-05-25T06:49:14Z-
dc.date.issued2009-02-12T03:15:39Z
dc.date.submitted2009-02-12
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/11215-
dc.description.abstractIn this paper, an order-independent algorithm for data reduction, called the Dynamic Condensed Nearest Neighbor (DCNN) rule, is proposed to adaptively construct prototypes in training dataset and to reduce the over-fitting affect with superfluous instances for the Support Vector Machine (SVM). Furthermore, a hybrid model based on the genetic algorithm is proposed to optimize the prototype construction, feature selection, and the SVM kernel parameters setting simultaneously. Several UCI benchmark datasets are considered to compare the proposed GA-DCNN-SVM approach with the GA-based previously published method. The experimental results show that the proposed hybrid model outperforms the existing method and improves the classification accuracy for SVM.
dc.description.sponsorship淡江大學,台北縣
dc.format.extent6p.
dc.relation.ispartofseries2008 ICS會議
dc.subjectdynamic condensed nearest neighbor
dc.subjectprototype construction
dc.subjectfeature selection
dc.subjectgenetic algorithm
dc.subjectsupport vector machine
dc.subject.otherArtificial Intelligence
dc.titleA Hybrid Prototype Construction and Feature Selection Method with Parameter Optimization for Support Vector Machine
分類:2008年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002008000160.pdf242.29 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。