完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, Pauray S.M.
dc.contributor.authorChen, Yao-Ming
dc.date.accessioned2009-06-02T07:06:40Z
dc.date.accessioned2020-05-25T06:47:29Z-
dc.date.available2009-06-02T07:06:40Z
dc.date.available2020-05-25T06:47:29Z-
dc.date.issued2009-02-12T08:49:04Z
dc.date.submitted2009-02-12
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/11247-
dc.description.abstractIn this paper, we propose a new framework for data stream mining, called the weighted sliding window model. The proposed model allows the user to specify the number of windows for mining, the size of a window, and the weight for each window. Thus, users can specify a higher weight to a more significant data section, which will make the mining result closer to user’s requirements. Based on the weighted sliding window model, we propose a single pass algorithm, called WSW(Weighted Sliding Window mining), to efficiently discover all the frequent itemsets from data streams. By analyzing data characteristics, an improved algorithm, called WSW-Imp, is developed to further reduce the time of deciding whether a candidate itemset is frequent or not. Empirical results show that WSW-Imp outperforms WSW under the weighted sliding windows.
dc.description.sponsorship淡江大學,台北縣
dc.format.extent6p.
dc.relation.ispartofseries2008 ICS會議
dc.subjectData mining
dc.subjectData stream
dc.subjectWeighted sliding window model
dc.subjectAssociation rule
dc.subjectFrequent itemset
dc.subject.otherArtificial Intelligence
dc.titleMining Frequent Itemsets for data streams over Weighted Sliding Windows
分類:2008年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002008000165.pdf259.59 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。