完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Tsai, Pauray S.M. | |
dc.contributor.author | Chen, Yao-Ming | |
dc.date.accessioned | 2009-06-02T07:06:40Z | |
dc.date.accessioned | 2020-05-25T06:47:29Z | - |
dc.date.available | 2009-06-02T07:06:40Z | |
dc.date.available | 2020-05-25T06:47:29Z | - |
dc.date.issued | 2009-02-12T08:49:04Z | |
dc.date.submitted | 2009-02-12 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/11247 | - |
dc.description.abstract | In this paper, we propose a new framework for data stream mining, called the weighted sliding window model. The proposed model allows the user to specify the number of windows for mining, the size of a window, and the weight for each window. Thus, users can specify a higher weight to a more significant data section, which will make the mining result closer to user’s requirements. Based on the weighted sliding window model, we propose a single pass algorithm, called WSW(Weighted Sliding Window mining), to efficiently discover all the frequent itemsets from data streams. By analyzing data characteristics, an improved algorithm, called WSW-Imp, is developed to further reduce the time of deciding whether a candidate itemset is frequent or not. Empirical results show that WSW-Imp outperforms WSW under the weighted sliding windows. | |
dc.description.sponsorship | 淡江大學,台北縣 | |
dc.format.extent | 6p. | |
dc.relation.ispartofseries | 2008 ICS會議 | |
dc.subject | Data mining | |
dc.subject | Data stream | |
dc.subject | Weighted sliding window model | |
dc.subject | Association rule | |
dc.subject | Frequent itemset | |
dc.subject.other | Artificial Intelligence | |
dc.title | Mining Frequent Itemsets for data streams over Weighted Sliding Windows | |
分類: | 2008年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002008000165.pdf | 259.59 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。