完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Pao, Tsang-Long | |
dc.contributor.author | Chen, Yu-Te | |
dc.contributor.author | Yeh, Jun-Heng | |
dc.contributor.author | Chang, Yuan-Hao | |
dc.date.accessioned | 2009-08-23T04:49:15Z | |
dc.date.accessioned | 2020-05-29T06:24:23Z | - |
dc.date.available | 2009-08-23T04:49:15Z | |
dc.date.available | 2020-05-29T06:24:23Z | - |
dc.date.issued | 2006-10-13T08:14:08Z | |
dc.date.submitted | 2005-12-15 | |
dc.identifier.uri | http://dspace.fcu.edu.tw/handle/2377/1202 | - |
dc.description.abstract | Humans communicate through speech, movement, hand gestures and facial expressions. We express our emotions in speech by the words that we use and intonation of the voice. Whereas research about automated recognition of emotions in facial expressions is now very rich, research dealing with the speech modality has only been active for very few years and is almost for English. In this paper, we presented a comparison of three KNN based classification algorithms for detecting emotion from Mandarin speech. The results show that the proposed weighted D-KNN outperforms the other two classification techniques: 13.1% improvement for traditional KNN and 7.4% improvement for M-KNN. The highest recognition rate (79.31%) is obtained with weighted D-KNN using Fibonacci series. | |
dc.description.sponsorship | 崑山大學,台南縣永康市 | |
dc.format.extent | 9p. | |
dc.format.extent | 142979 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 2005 NCS會議 | |
dc.subject | KNN | |
dc.subject | Emotion Detection | |
dc.subject | Weighted D-KNN | |
dc.subject | 最近鄰居分類法 | |
dc.subject | 情緒辨識 | |
dc.subject | 權重式D-KNN | |
dc.subject.other | MultiMedia Processing & Segmentation | |
dc.title | A Comparison of KNN Based Classifiers for Detecting Emotion from Mandarin Speech | |
dc.title.alternative | 以最近鄰居分類法為基礎的分類器在中文語音情緒辨識表現之比較 | |
分類: | 2005年 NCS 全國計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ncs002006000110.pdf | 139.63 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。