完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Chun-Hsien
dc.contributor.authorChang, Her-Kun
dc.date.accessioned2009-08-23T04:46:49Z
dc.date.accessioned2020-05-29T06:18:59Z-
dc.date.available2009-08-23T04:46:49Z
dc.date.available2020-05-29T06:18:59Z-
dc.date.issued2006-10-17T07:01:20Z
dc.date.submitted2001-12-20
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/1744-
dc.description.abstractArtificial neural networks (ANNs), due to their inherent parallelism, offer an attractive paradigrn for efficient implementations of functional modules for symbolic computations intensively involving content-based pattern matchin. This paper explores how to exploit the inheretn parallelism and versatile repressentation in ANNs to reducethe operation and implementation time overhead of nondeterministic finite automata (NFAs). NFAs are a basic model of symbolic computing in computer science, and they thus provide a typical model suitable for the exploration of parallel symbolic computing via ANNs. For every NFA,a recurrent neural network(RNN)con be systematically synthesized to concurrently track at each time step all the states reached by the possible nondeterministic moves of the NFA. Such a concurrent breadth-first tracking is faciltated by two types of parallel symbolic computations ezecuted by the proposed RNN. One is parallel ocntent-based pattern matching, and the other is parallel union operation of sets.
dc.description.sponsorship中國文化大學,台北市
dc.format.extent12p.
dc.format.extent240092 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2001 NCS會議
dc.subjectartificial neural network
dc.subjectnondeterministic finite automata
dc.subjectparallel nondeterministic computiong
dc.subject.otherNeural Networks
dc.titleParallel Computin Model of Nondeterministic Finite Automata via Artificial Neural Networks
分類:2001年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ncs002001000037.pdf234.46 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。