完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Kuo Jui
dc.contributor.authorChen, Meng Chang
dc.date.accessioned2009-08-23T04:47:41Z
dc.date.accessioned2020-05-29T06:17:11Z-
dc.date.available2009-08-23T04:47:41Z
dc.date.available2020-05-29T06:17:11Z-
dc.date.issued2006-10-18T11:02:24Z
dc.date.submitted2001-12-20
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/1970-
dc.description.abstractTopic discovery is an important means for marketing, e-Business, social science study and many other applications for various purposes, such as identifying a group with certain properties, observing the raise and diminishment of a certain group. The explosively growing of Internet makes automatic topic discovery a must for the task. In this paper, first we propose the TGM method to rank the eigenvectors of the Web hyperlinked matrix and their associated topics. Then we propose the ATD method, which combines a clustering algorithm with a conventional principal eigenvector computation method, to identify the topics relevant to a given query without manual examination. Our extensive experiments show the ATD method performs very well, and beats TGM in terms of computation time and topic discovery quality.
dc.description.sponsorship中國文化大學,台北市
dc.format.extent10p.
dc.format.extent418425 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2001 NCS會議
dc.subjecttopic discovery
dc.subjecthyperlink analysis
dc.subjectauthority and hub
dc.subject.otherInformation System and Knowledge Management
dc.titleAutomatic topic discovery from hyperlinked text
分類:2001年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ncs002001000200.pdf408.62 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。