完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTang, Yi-Tsung
dc.contributor.authorChiu, Hung-Pin
dc.date.accessioned2009-08-23T04:49:24Z
dc.date.accessioned2020-05-29T06:24:55Z-
dc.date.available2009-08-23T04:49:24Z
dc.date.available2020-05-29T06:24:55Z-
dc.date.issued2006-10-18T11:02:32Z
dc.date.submitted2005-12-15
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/1971-
dc.description.abstractThe discovery of fuzzy association rules is an important data-mining task for which many algorithms have been proposed. However, the efficiency of these algorithms needs to be improved to handle real-world large datasets. In this paper, we present an efficient method named cluster-based fuzzy association rule (CBFAR) to discover generalized fuzzy association rules from web structures. The CBFAR method is to create fuzzy cluster tables by scanning the browse information database (BIDB) once, and then clustering the browse records to the k-th cluster table, where the length of a record is k. The counts of the fuzzy regions are stored in the Fuzzy_Cluster Tables. This method requires less contrast to generate large itemsets. The CBFAR method is also discussed.
dc.description.sponsorship崑山大學,台南縣永康市
dc.format.extent6p.
dc.format.extent166402 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2005 NCS會議
dc.subjectFuzzy data mining
dc.subjectassociation rules
dc.subject模糊資料挖掘
dc.subject關聯法則
dc.subject.other智慧科技應用
dc.titleMining generalized fuzzy association rules from web taxonomic Mining generalized fuzzy association rules from web taxonomic
分類:2005年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ncs002006000201.pdf162.5 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。