完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Syiam, Mostafa Mahmoud | |
dc.date.accessioned | 2009-08-23T04:40:07Z | |
dc.date.accessioned | 2020-05-25T06:24:00Z | - |
dc.date.available | 2009-08-23T04:40:07Z | |
dc.date.available | 2020-05-25T06:24:00Z | - |
dc.date.issued | 2006-10-23T01:40:34Z | |
dc.date.submitted | 1998-12-17 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/2126 | - |
dc.description.abstract | This paper presents a multi-layer perceptron (MLP)-based technique for improving generalization performance in condensed nearest-neighbor (CNN) classifier. The CNN classifier is simple and efficient in time due to its condensed set of prototypes. However, its generalization performance is not as good as that of nearest-neighbor (NN) classifier that uses the complete large training data set. The developed MLP-based technique is used to modify the condensed set of prototypes of CNN classifier in order to generate or enhance the useful features of such prototypes so that the CNN classifier could also achieve good generalization performance. The improving in the performance of the developed CNN classifier is shown by experimental results. | |
dc.description.sponsorship | 成功大學,台南市 | |
dc.format.extent | 8p. | |
dc.format.extent | 587392 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 1998 ICS會議 | |
dc.subject.other | Neural Networks | |
dc.title | IMPROVING GENERALIZATION PERFORMANCE IN CNN CLASSIFIER USING A MLP-BASED TECHNIQUE | |
分類: | 1998年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics001998000220.pdf | 573.62 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。