完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Sheng-Tun
dc.date.accessioned2009-08-23T04:39:52Z
dc.date.accessioned2020-05-25T06:27:09Z-
dc.date.available2009-08-23T04:39:52Z
dc.date.available2020-05-25T06:27:09Z-
dc.date.issued2006-10-23T03:07:31Z
dc.date.submitted1998-12-17
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2135-
dc.description.abstractThe scale used in the input data is one of the key issues in conducting cluster analysis in spatiotemporal data mining. Results determined from different scales of the input data could be varied. To reduce the clustering uncertainties by using a fixed time scale, it will be useful to generate a two-dimensional scale-based data which covers a range of scales as input in cluster analysis. A multiscale rotated principal component analysis approach using the continuous wavelet transform is proposed to investigate the non-stationary characteristics of time series for the study of the spatial variability in the cluster analysis of rainfall. Experimental results of precipitation pattern analysis show that the proposed approach is capable of removing the local small features by using one small scale or improving the over-smoothed regions by using one large scale input.
dc.description.sponsorship成功大學,台南市
dc.format.extent7p.
dc.format.extent435192 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries1998 ICS會議
dc.subject.otherReasoning & Knowledge-Based Systems
dc.titleA MULTISCALE STUDY OF SPATIOTEMPORAL DATA MINIING-CASE STUDY:PRECIPITATION PATTERN ANALYSIS
分類:1998年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics001998000229.pdf424.99 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。