完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Ruey-Maw
dc.contributor.authorHuang, Yueh-Min
dc.date.accessioned2009-08-23T04:41:33Z
dc.date.accessioned2020-05-25T06:39:22Z-
dc.date.available2009-08-23T04:41:33Z
dc.date.available2020-05-25T06:39:22Z-
dc.date.issued2006-10-23T15:46:31Z
dc.date.submitted2002-12-18
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2243-
dc.description.abstractThe Hopfield neural network is widely applied to obtain an optimal solution in a variety of different scheduling applications. A competitive learning rule provides a highly effective means of attaining a sound solution and is capable of reducing the time-consuming effort of obtaining coefficients. Restated, the competitive mechanism simplifies the network complexity. This important feature is applied to Hopfield neural network to derive a new technique, i.e. competitive Hopfield neural network. This investigation utilizes the competitive Hopfield neural network to resolve a multiprocessor real-time scheduling problem with constrained times (execution time and deadline). Simulation results demonstrate that the competitive Hopfield neural network imposed on the proposed energy function ensures an appropriate approach of solving this class of real-time scheduling problems.
dc.description.sponsorship東華大學,花蓮縣
dc.format.extent19p.
dc.format.extent86046 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2002 ICS會議
dc.subjectScheduling
dc.subjectWinner-take-all
dc.subjectCompetitive learning rule
dc.subjectHopfield neural network
dc.subject.otherArtificial Intelligence
dc.titleCompetitive Neural Network to Solve Real-Time Scheduling
分類:2002年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002002000314.PDF84.03 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。