完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKiang, M. Y.
dc.contributor.authorKumar, A.
dc.contributor.authorChi, R.T.
dc.date.accessioned2009-08-23T04:41:36Z
dc.date.accessioned2020-05-25T06:39:41Z-
dc.date.available2009-08-23T04:41:36Z
dc.date.available2020-05-25T06:39:41Z-
dc.date.issued2006-10-23T15:47:07Z
dc.date.submitted2002-12-18
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2246-
dc.description.abstractThis paper presents the technique of an extended SOM networks and shows how it can be applied as a data analysis tool to market segmentation. The Self-Organizing Map (SOM) network, an unsupervised learning neural network, is a categorization network developed by Kohonen. In this research, we implemented an extended version of SOM networks that further groups SOM output map into user specified number of clusters. We then compared the extended SOM network and K-means analysis, a popular clustering technique, in the context of market segmentation problems. The a priori motivation for considering a neural networks alternative is that SOM networks, like most of the neural network models, do not assume the multivariate normality of data and hence, may be more robust. Test results indicate that the extended SOM networks perform better than K-means analysis when the data are skewed.
dc.description.sponsorship東華大學,花蓮縣
dc.format.extent16p.
dc.format.extent53949 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2002 ICS會議
dc.subjectArtificial Intelligence Application
dc.subjectSOM Neural Network
dc.subjectSOM Neural Network
dc.subjectMarket Segmentation
dc.subject.otherArtificial Intelligence
dc.titleThe application of an Extended Self-Organizing Map Networks to Market Segmentation
分類:2002年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002002000363.PDF52.68 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。