完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Wern-Jun
dc.contributor.authorChen, Sin-Horng
dc.date.accessioned2009-08-23T04:41:29Z
dc.date.accessioned2020-05-25T06:38:57Z-
dc.date.available2009-08-23T04:41:29Z
dc.date.available2020-05-25T06:38:57Z-
dc.date.issued2006-10-24T01:13:46Z
dc.date.submitted2002-12-18
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2333-
dc.description.abstractProsodic modeling plays an important role in the integration of speech recognition and natural language understanding. The function of prosodic modeling for the integration of speech recognition and natural language understanding is to explore the prosodic phrasing of the testing utterance for providing useful information to help linguistic decoding in the next stage. The main concern of the prosodic phrasing issue is to build a model describing the relationship between input prosodic features extracted from the testing utterance and output linguistic features of the associated text. In this paper, three prosodic modeling approaches based on the VQ, SOFM, and RNN techniques have been discussed in detail. Experimental results have shown that they all functioned well on detecting prosodic states from acoustic cues. By evaluating on perplexity reduction, we found that the RNN-based approach outperformed the other two approaches.
dc.description.sponsorship東華大學,花蓮縣
dc.format.extent18p.
dc.format.extent71663 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2002 ICS會議
dc.subjectSpeech Recognition
dc.subjectProsody
dc.subjectFeature Map
dc.subjectNeural Network
dc.subject.otherArtificial Intelligence
dc.titleThe Study of Prosodic Modeling for Mandarin Speech
分類:2002年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002002000357.PDF69.98 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。