完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, Chang-Jiun
dc.contributor.authorWang, Ching-Hung
dc.contributor.authorHong, Tzung-Pei
dc.contributor.authorTseng, Shian-Shyong
dc.date.accessioned2009-08-23T04:38:53Z
dc.date.accessioned2020-05-25T06:26:49Z-
dc.date.available2009-08-23T04:38:53Z
dc.date.available2020-05-25T06:26:49Z-
dc.date.issued2006-10-24T06:52:00Z
dc.date.submitted1996-12-19
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2388-
dc.description.abstractIn real applications, data provided to a learning system usually contain noisy and fuzzy information which greatly influences concept descriptions derived by conventional inductive learning methods. Modifying learning methods to learn concept descriptions in noisy and vague environments is thus very important. In this paper, we apply fuzzy set concept to machine learning to solve this problem. A fuzzy learning algorithm based on the AQR strategy is proposed to manage noisy and fuzzy information. The proposed algorithm generates fuzzy linguistic rules from fuzzy instances. In the experiment, the Iris Flower classification problem is used to compare the accuracy of the proposed algorithm with that of some other learning algorithms. Experimental results show that our method yields high accuracy.
dc.description.sponsorship中山大學,高雄市
dc.format.extent7p.
dc.format.extent525397 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries1996 ICS會議
dc.subjectFuzzy set
dc.subjectfuzzy AQR
dc.subjecthypothesis space
dc.subjectinstance space
dc.subjectinductive learning
dc.subject.otherMachine Learning
dc.titleAn Inductive Learning Strategy with Fuzzy Sets
分類:1996年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics001996000065.pdf513.08 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。