完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Wu-Yu
dc.date.accessioned2009-08-23T04:40:00Z
dc.date.accessioned2020-05-25T06:23:49Z-
dc.date.available2009-08-23T04:40:00Z
dc.date.available2020-05-25T06:23:49Z-
dc.date.issued2006-10-24T08:19:22Z
dc.date.submitted1998-12-17
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2408-
dc.description.abstractA typical convention for drawing G is to put the vertices of S on a line and the vertices of T on a separate parallel line and then represent edges by placing straight line segments between the vertices that determine them . In this convention, a drawing is biplanar if it has a biplanar drawing.The maximum biplanar subgraph problem is to find a biplanar subgraph with a maximum number of edges. In general, this maximum biplanar subgraph problem is NP-complete, In this paper, we show the Maximum biplanar subgraph problem belongs to not only the class P, but also the class NC, when input graphs are restricted to doubly convex-bipartite graphs. Moreover, our sequential algorithm is optimal.
dc.description.sponsorship成功大學,台南市
dc.format.extent489428 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries1998 ICS會議
dc.subjectMaximum biplanar subgraph
dc.subjectgraph drawing
dc.subjectdoubly convex-bipartite graphs
dc.subjectP class
dc.subjectNC class
dc.subjectcrossing number
dc.subject.otherGraph Algorithms
dc.titleOn the complexity of the maximum biplanar subgraph problem
分類:1998年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics001998000042.pdf477.96 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。