完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chang, Wu-Yu | |
dc.date.accessioned | 2009-08-23T04:40:00Z | |
dc.date.accessioned | 2020-05-25T06:23:49Z | - |
dc.date.available | 2009-08-23T04:40:00Z | |
dc.date.available | 2020-05-25T06:23:49Z | - |
dc.date.issued | 2006-10-24T08:19:22Z | |
dc.date.submitted | 1998-12-17 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/2408 | - |
dc.description.abstract | A typical convention for drawing G is to put the vertices of S on a line and the vertices of T on a separate parallel line and then represent edges by placing straight line segments between the vertices that determine them . In this convention, a drawing is biplanar if it has a biplanar drawing.The maximum biplanar subgraph problem is to find a biplanar subgraph with a maximum number of edges. In general, this maximum biplanar subgraph problem is NP-complete, In this paper, we show the Maximum biplanar subgraph problem belongs to not only the class P, but also the class NC, when input graphs are restricted to doubly convex-bipartite graphs. Moreover, our sequential algorithm is optimal. | |
dc.description.sponsorship | 成功大學,台南市 | |
dc.format.extent | 489428 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 1998 ICS會議 | |
dc.subject | Maximum biplanar subgraph | |
dc.subject | graph drawing | |
dc.subject | doubly convex-bipartite graphs | |
dc.subject | P class | |
dc.subject | NC class | |
dc.subject | crossing number | |
dc.subject.other | Graph Algorithms | |
dc.title | On the complexity of the maximum biplanar subgraph problem | |
分類: | 1998年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics001998000042.pdf | 477.96 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。