完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHo, Ting-Yem
dc.contributor.authorChang, Jou-Ming
dc.contributor.authorWang, Yue-Li
dc.date.accessioned2009-08-23T04:39:50Z
dc.date.accessioned2020-05-25T06:26:51Z-
dc.date.available2009-08-23T04:39:50Z
dc.date.available2020-05-25T06:26:51Z-
dc.date.issued2006-10-24T08:50:46Z
dc.date.submitted1998-12-17
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2409-
dc.description.abstractFor an undirected graph G=(V,E), the k-th power Gk is the graph with the same vertex set as G such that two vertices are adjacent in Gk if and only if their distance in G is at most k. A set of vertices A  V is an asteroidal set if for every vertex a  A, the set a\{a} is contained in one connected component of G-NG [a],where NG [a] is closed neighborhood of a in G. The asteroidal number of a graph G is the maximum cardinality of an asteroidal set in G. The class of graphs with asteroidal number at most s is denoted by A(s). In this paper, we show that if Gk  A(s) for s ≥ 2, then so is Gk+1 .This generalizes a previous result for the family of AT-free graphs. Moreover, we consider the forbidden configurations for the powers of graphs with bounded asteroidal number, Based on these forbidden configurations, we show that every proper power of AT-free graphs is perfect
dc.description.sponsorship成功大學,台南市
dc.format.extent8p.
dc.format.extent607941 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries1998 ICS會議
dc.subjectasteroidal triple
dc.subjectAT-free graphs
dc.subjectpowers of graphs
dc.subjectstrong perfect graph conjecture
dc.subject.otherGraph Algorithms
dc.titleOn the powers of graphs with bounded asteroidal number
分類:1998年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics001998000043.pdf593.69 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。