完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Jia-Lin
dc.contributor.authorTsai, Kun-Cheng
dc.date.accessioned2009-08-23T04:39:07Z
dc.date.accessioned2020-05-25T06:24:34Z-
dc.date.available2009-08-23T04:39:07Z
dc.date.available2020-05-25T06:24:34Z-
dc.date.issued2006-10-25T01:12:07Z
dc.date.submitted1996-12-19
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2435-
dc.description.abstractIn this paper, we propose a novel approach for facial image recognition. Coarse and fine resolutions respectively provide the global and locally detailed information;and we use on SOFM for automatically learning facial features for one resolution. A particular classification strategy, called the coarse-to fine pyramidal decision strategy, is proposed to hierarchically integrate the recognition decision of each resolution with the order from the coarsest resolution to the finest. Potential candidates are sifted as the resolution increases, and fewer and fewer candidates are survived. The experimental results show 100% accuracy is achieved.
dc.description.sponsorship中山大學,高雄市
dc.format.extent8p.
dc.format.extent1159697 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries1996 ICS會議
dc.subjectface recognition
dc.subjectself-organized feature map
dc.subjectcoarse-to-fine pyramidal decision strategy
dc.subjectmulti-resolution
dc.subjecttransform
dc.subject.otherPattern Matching & Recognition
dc.titleFacial Image Recognition Based on Connectionist Model and Coarse-to-Fine Pyramidal Decision Strategy
分類:1996年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics001996000079.pdf1.13 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。