完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Yung-Hui
dc.contributor.authorLiny, Yaw-Ling
dc.contributor.authorTang, Chuan-Yi
dc.date.accessioned2009-06-02T06:20:26Z
dc.date.accessioned2020-05-25T06:36:40Z-
dc.date.available2009-06-02T06:20:26Z
dc.date.available2020-05-25T06:36:40Z-
dc.date.issued2006-10-25T05:55:45Z
dc.date.submitted2000-12-08
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2484-
dc.description.abstractIn this paper we study the variation of the minimum latency problem(MLP) [2]. The MLP is to nd a walk tour on the graph G(V;E) with a distance matrix di;j . Where di;j indicate the distance between vi and vj . Let `(vi) is the latency length of vi, dened to be the dis- tance traveled before rst visiting vi. The minimum la- tency tour is to minimize Pn i=1 `(vi). In some message broadcast and scheduling problem [8] the vertex also has latency time and weight. Those problem need to extend the objective function of the minimum latency tour as Pn i=1 `(vi)w(vi). The denition is equivalent to the MLP with no edge distance but vertex latency time and vertex weight. We give an linear algorithm for the unweighted full k-ary tree or k-path graphs, and O(n log n) time for general tree graphs. The time complexity in trees is the same as Adolphson's result; however, the algorithm given here is not only simpler, easier to understand, but also more exible and thus can be easily extended to other classes of graphs.
dc.description.sponsorship中正大學,嘉義縣
dc.format.extent6p.
dc.format.extent200162 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2000 ICS會議
dc.subjectminimum latency problem,
dc.subjectk-path graphs
dc.subjectlinear ordering
dc.subjectbroadcast network
dc.subjecttrees
dc.subject.otherGraph Algorithms
dc.titleA Variation of Minimum Latency Problem
分類:2000年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002000000004.pdf195.47 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。