完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Yang, Jinn-Shyong | |
dc.contributor.author | Ho, Ting-Yem | |
dc.contributor.author | Wang, Yue-Li | |
dc.contributor.author | Ko, Ming-Tat | |
dc.date.accessioned | 2009-06-02T06:20:59Z | |
dc.date.accessioned | 2020-05-25T06:36:50Z | - |
dc.date.available | 2009-06-02T06:20:59Z | |
dc.date.available | 2020-05-25T06:36:50Z | - |
dc.date.issued | 2006-10-25T06:15:28Z | |
dc.date.submitted | 2000-12-08 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/2491 | - |
dc.description.abstract | A major topic of studying communication networks is to nd an appropriate route for mes- sage transmission. In particular, the design of parallel routing can be used to transmit mul- tiple packets eÆciently from a source node to a destination node simultaneously. In this pa- per, we consider the problem of constructing parallel routes in an alternating group graph, which has recently been developed as a new model of the interconnection topology for par- allel and distributed computing systems. An n- alternating group graph contains (n!)=2 nodes and is a regular graph with degree 2(n 2) for each node. The aim of our work is to provide an algorithm for constructing 2(n2) edge-disjoint paths for any pair of nodes in an n-alternating group graph for a special case. Furthermore, we show that the lengths of all paths are shortest. | |
dc.description.sponsorship | 中正大學,嘉義縣 | |
dc.format.extent | 8p. | |
dc.format.extent | 173411 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 2000 ICS會議 | |
dc.subject | Interconnection networks, Alternating group graphs | |
dc.subject | Latin square | |
dc.subject | Parallel routing | |
dc.subject.other | Combinatorial Computing | |
dc.title | Applying Latin Square on Parallel Routing of Alternating Group Graphs | |
分類: | 2000年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002000000009.pdf | 169.35 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。