完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYu, Pao-Ta
dc.contributor.authorTsai, Hung-Hsu
dc.date.accessioned2009-08-23T04:39:09Z
dc.date.accessioned2020-05-25T06:24:46Z-
dc.date.available2009-08-23T04:39:09Z
dc.date.available2020-05-25T06:24:46Z-
dc.date.issued2006-10-25T07:00:28Z
dc.date.submitted1996-12-19
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2510-
dc.description.abstractThe design of adaptive filters becomes more important in the field of image restoration. In this paper, we propose a new class of neural network filters which possess more adaptive capability in contrast to that of rank selection (RCRS) filters which are a large class of selection filters. As we know, the RCRS filters possess some powerful filtering capability among the conventional filters for image restoration. The selection filters include the RCRS filters whose output is on of the observation samples. In addition, the RCRS filters need the exponential computation complexity to achieve their design process. Fortunately, the neural network filters can avoid this problem. Finally, the experiment results demonstrate that the adaptive capability for te neural network filters in better than that of the RCRS filters.
dc.description.sponsorship中山大學,高雄市
dc.format.extent8p.
dc.format.extent1318707 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries1996 ICS會議
dc.subjectneural networks
dc.subjectRCRS filter
dc.subjectimpulsive noise
dc.subjectmultilayer perceptrons
dc.subjectback-propagation
dc.subject.otherFuzzy & Neural Networks
dc.titleOn the Design and Study of Adaptive Capability for Neural Network Filters in Image Restoration
分類:1996年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics001996000095.pdf1.29 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。