完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Shao-Han
dc.contributor.authorLin, Jzau-Sheng
dc.date.accessioned2009-06-02T06:22:12Z
dc.date.accessioned2020-05-25T06:37:54Z-
dc.date.available2009-06-02T06:22:12Z
dc.date.available2020-05-25T06:37:54Z-
dc.date.issued2006-10-25T07:34:38Z
dc.date.submitted2000-12-08
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2519-
dc.description.abstractadvantageous over crisp clustering in some applications such as pattern recognition, image segmentation, and compression. In this paper, a new Hopfield-model net based on fuzzy possibilistic reasoning is proposed to clustering problem. The main purpose is to modify the Hopfield network and embed Fuzzy Possibilistic Fuzzy C-Means (FPCM) method to construct a classification system named Fuzzy-Possibilistic Hopfield Net (FPHN). The classification system is paradigms for the implementation of fuzzy logic systems in neural network architecture. Instead of one state in a neuron for the conventional Hopfield nets, each neuron occupies 2 states called membership state and typicality state in the proposed PFHN. The proposed network not only solves the noise sensitivity fault of Fuzzy C-Means (FCM) but also overcomes the simultaneous clustering problem of Possibilistic C-Means (PCM) strategy. In addition to the same characteristics as the possibilistic fuzzy c-means algorithm, the designed neural-network-based approach is self-organized structure that is highly interconnected and can be implemented in a parallel manner. The experimental results show that the proposed FPHN can obtain promising solutions
dc.description.sponsorship中正大學,嘉義縣
dc.format.extent6p.
dc.format.extent185934 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2000 ICS會議
dc.subjectpossibilistic c-means
dc.subjectHopfield neural network
dc.subjectfuzzy-possibilistic c-means
dc.subject.otherNeural Networks & Fuzzy System
dc.titleA Fuzzy-Possibilistic Neural Network to Clustering
分類:2000年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002000000027.pdf181.58 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。