完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Hung-Ju
dc.contributor.authorHsu, Chun-Nan
dc.date.accessioned2009-06-02T06:21:39Z
dc.date.accessioned2020-05-25T06:37:17Z-
dc.date.available2009-06-02T06:21:39Z
dc.date.available2020-05-25T06:37:17Z-
dc.date.issued2006-10-26T02:32:00Z
dc.date.submitted2000-12-08
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2591-
dc.description.abstractLearning naive Bayesian classiers is an impor- tant approach to probabilistic induction. However, no study has been done on naive Bayesian classiers when a query vector includes interval-valued data, and little is known about how a set of query vectors from the same unknown class can be accurately classied. In this paper, we present a new training approach to the problems above. This ap- proach is based on the \perfect aggregation" property of the Dirichlet distribution, which is usually assumed to be the prior of the variables in a Bayesian classier. The exper- imental results show that when we merge an appropriate number of query vectors with the same unknown class and the interval-valued data are formed, the acccuracies of a trained naive Bayesian classier can be promoted signi- cantly. This paper also reports a successful application of our approach in speaker recognition.
dc.description.sponsorship中正大學,嘉義縣
dc.format.extent8p.
dc.format.extent265457 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2000 ICS會議
dc.subjectNaive Bayesian Classier
dc.subjectMachine Learning
dc.subjectInterval Query
dc.subjectData Mining
dc.subject.otherAgents & Machine Learning
dc.titleBayesian Classication for Set and Interval Data
分類:2000年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002000000042.pdf259.24 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。