完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKao, Shu-Chen
dc.contributor.authorChang, Hae-Ching
dc.contributor.authorLin, Chin-Ho
dc.contributor.authorWu, Chien-Hsing
dc.date.accessioned2009-06-02T06:20:18Z
dc.date.accessioned2020-05-25T06:39:44Z-
dc.date.available2009-06-02T06:20:18Z
dc.date.available2020-05-25T06:39:44Z-
dc.date.issued2006-10-26T02:35:19Z
dc.date.submitted2000-12-08
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2592-
dc.description.abstractRecently, Data Mining (DM) gradually becomes an active domain as many mining techniques were developed. ID3, an induction-based method of data mining, applies information theory to get the entropy of the attribute by which the decision tree can be developed. On the other hand, Kendall’s correlation is a statistics-based method to help us to find the correlation coefficient of the attributes and the result. According to the coefficient, the decision tree can be generated. The comparison of the above methods is made to find out the way can extracts concise rules from huge datasets, which is seldom discussed in the past. In this research, two different datasets are used in comparing and the criterions are the number of rules and the depth of the generated decision tree. The result shows the ID3 performs better than Kendall’s correlation.
dc.description.sponsorship中正大學,嘉義縣
dc.format.extent5p.
dc.format.extent55192 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2000 ICS會議
dc.subjectdata mining
dc.subjectentropy
dc.subjectKendall’s correlation
dc.subjectcorrelation coefficient
dc.subjectID3
dc.subject.otherAgents & Machine Learning
dc.titleA Rule Discovery Comparison of Stastics to Induction: KENDALL's vs. ID3 in the Dermatology and Liver Disorder DIAGNOSIS DOMAIN
分類:2000年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002000000043.pdf53.9 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。