完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSu, Yih-Ming
dc.contributor.authorWang, Jhing-Fa
dc.date.accessioned2009-08-23T04:39:07Z
dc.date.accessioned2020-05-25T06:24:34Z-
dc.date.available2009-08-23T04:39:07Z
dc.date.available2020-05-25T06:24:34Z-
dc.date.issued2006-10-27T07:20:23Z
dc.date.submitted1996-12-19
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2735-
dc.description.abstractA mail shorting system based on the development of OCR system is proposed in the paper for the automatic mail processing. The system to recognize the handwritten Chinese postal addresses on standard envelopes is constructed by using dual-expert classification scheme. Each architecture of dual-expert classification scheme includes feature extraction stage, recognition stage, and semantic processing stage. The black local density feature (BLDF) and multi-layer percetron (MLP)are used in the first expert classification for handwritten Chinese characters (HCCs). The white local density feature (WLDF) and Bayesian network are used in the other expert classification for HCCs. Since the names of city on addresses contain contextual information, the performance of recognition can be increased by the semantic processing. Finally, the comparison of results from the two expert classifications is used to reduce error rate of address recognition. By using dual-expert classification, we could improve the performance of the system with 70.2% correction rate and 1.3% error rate in our experimental results.
dc.description.sponsorship中山大學,高雄市
dc.format.extent7p.
dc.format.extent1311471 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries1996 ICS會議
dc.subject.otherDocument Analysis
dc.titleRecognition of Handwritten Chinese Postal Addresses Using A Dual-Expert Classification Scheme
分類:1996年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics001996000193.pdf1.28 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。