題名: Facial Expression Recognition Using Contourlets and Regularized Discriminant Analysis-based Boosting Algorithm
作者: Lee, Chien-Cheng Jr
Shih, Cheng-Yuan Jr
關鍵字: RDA
AdaBoost
contourlets
Facial expression
期刊名/會議名稱: 2010 ICS會議
摘要: This paper presents a facial expression recognition based on contourlet features and a regularized discriminant analysis (RDA)-based boosting algorithm. The proposed method utilizes a RDA-based boosting algorithm with effective contourlet features to recognize the facial expressions. Entropy criterion is applied to select the informative contourlet feature which is a subset of informative and nonredundant contourlet features. RDA-based boosting algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
日期: 2011-01-06T20:52:09Z
分類:2010年 ICS 國際計算機會議(如需查看全文,請連結至IEEE Xplore網站)

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。