完整後設資料紀錄
DC 欄位語言
dc.contributor.author馮, 玄明 Jr
dc.contributor.author廖, 國隆 Jr
dc.date.accessioned2011-02-21T23:27:55Z
dc.date.accessioned2020-05-18T03:24:33Z-
dc.date.available2011-02-21T23:27:55Z
dc.date.available2020-05-18T03:24:33Z-
dc.date.issued2011-02-21T23:27:55Z
dc.date.submitted2009-11-27
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/30031-
dc.description.abstractIt is true that the normal TSP can be proved as the well-known NP-Complete (Non-Deterministic Polynomial) path searching problems. The more cities’ nodes number will cause more complex traveling path problems. This paper combines the Particle Swarm Optimization (PSO), Transfer Space (TS) and Simulated Annealing (SA) to build the PSO-TS-SA algorithm. The Fuzzy C-means Clustering (FCM) algorithm is determined to reduce the complexity of large scale traveling cities. From the experiments on several TSP, the proposed hybrid fuzzy C-means clustering and particle swarm optimization Algorithms achieve more accuracy in the lower cost of computation time.
dc.description.sponsorshipNational Taipei University,Taipei
dc.format.extent8p.
dc.relation.ispartofseriesNCS 2009
dc.subjectTraveling Salesman Problem
dc.subjectParticle Swarm Optimization
dc.subjectSimulated Annealing
dc.subjectFuzzy C-means Clustering
dc.subject.otherWorkshop on Algorithms and Bioinformatics
dc.titleHybrid Fuzzy C-means Clustering and Particle Swarm Optimization Algorithms for Traveling Salesman Problems
分類:2009年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
AB 2-4.pdf339.69 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。