完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 葉, 雲奇 Jr | |
dc.contributor.author | 林, 泓志 Jr | |
dc.date.accessioned | 2011-03-29T00:30:08Z | |
dc.date.accessioned | 2020-05-18T03:22:18Z | - |
dc.date.available | 2011-03-29T00:30:08Z | |
dc.date.available | 2020-05-18T03:22:18Z | - |
dc.date.issued | 2011-03-29T00:30:08Z | |
dc.date.submitted | 2009-11-27 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/30204 | - |
dc.description.abstract | This study proposes a simple and reliable method, termed the Fuzzy C-Means method (FCMM) for classifying the heartbeat cases from electrocardiogram (ECG) signals. The FCMM can accurately classify and distinguish the difference between normal heartbeats and abnormal heartbeats. Classifying the heartbeat cases from ECG signals consists of four main procedures: (i) QRS extraction stage for detecting QRS waveform using the Difference Operation Method; (ii) qualitative features stage for qualitative feature selection on ECG signals; (iii) Procedure-FCM is used to compute the cluster center for each class; and (iv) Procedure-HCD is used to determine the heartbeat case for the patient. The available ECG records in the MIT-BIH arrhythmia database are utilized to illustrate the effectiveness of the proposed method. Experimental results show that the total classification accuracy was approximately 93.78%. | |
dc.description.sponsorship | National Taipei University,Taipei | |
dc.format.extent | 6p. | |
dc.relation.ispartofseries | NCS 2009 | |
dc.subject | ECG signal | |
dc.subject | Fuzzy C-Means | |
dc.subject.other | Workshop on Artificial Intelligence, Fuzzy, and U-Learning | |
dc.title | 心跳種類的分析與判斷:模糊C-平均值演算法 | |
分類: | 2009年 NCS 全國計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
AFU 5-6.pdf | 474.16 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。