完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Chuan-Yu
dc.contributor.authorJian, Ru-Hao
dc.contributor.authorWang, Hung-Jen
dc.date.accessioned2011-04-01T00:15:19Z
dc.date.accessioned2020-05-18T03:22:52Z-
dc.date.available2011-04-01T00:15:19Z
dc.date.available2020-05-18T03:22:52Z-
dc.date.issued2011-04-01T00:15:19Z
dc.date.submitted2009-11-28
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/30286-
dc.description.abstractAnalyzing the contents of an image and retrieving corresponding semantics are important in semantic- based image retrieval system. In this paper, we apply the principal component analysis (PCA) to extract significant image features and then incorporated it with the proposed Two-phase Fuzzy Adaptive Resonance Theory Neural Network (Fuzzy-ARTNN) for image content classification. In general, Fuzzy-ARTNN is an unsupervised classifier. Meanwhile, the training patterns in image content analysis are labeled with corresponding categories. This category information is useful for supervised learning. Thus, a supervised learning mechanism is added to label the category of the cluster centers derived by the Fuzzy-ARTNN. The experimental results show that the proposed method has a high accuracy for semantic-based photograph content analysis, and the result of photograph content analysis is similar to perception of the human eyes.
dc.description.sponsorshipNational Taipei University,Taipei
dc.format.extent10p.
dc.relation.ispartofseriesNCS 2009
dc.subjectprincipal component analysis
dc.subjectFuzzy Adaptive Resonance Theory Neural Network
dc.subjectImage Retrieval
dc.subject.otherWorkshop on Image Processing, Computer Graphics, and Multimedia Technologies
dc.titleTwo-phase Fuzzy-ART with Principal Component Analysis for Semantic Image Classification
分類:2009年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
ICM 7-7.pdf300.04 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。