完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShih, Yuan-Kang Jr
dc.contributor.authorShih, Lun-Min Jr
dc.contributor.authorTan, Jimmy J. M. Jr
dc.contributor.authorHsu, Lih-Hsing Jr
dc.date.accessioned2011-04-01T00:18:31Z
dc.date.accessioned2020-05-18T03:23:18Z-
dc.date.available2011-04-01T00:18:31Z
dc.date.available2020-05-18T03:23:18Z-
dc.date.issued2011-04-01T00:18:31Z
dc.date.submitted2009-11-28
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/30322-
dc.description.abstractA graph G is edge-pancyclic if each edge lies on cycles of all lengths. A bipartite graph is edgebipancyclic if each edge lies on cycles of every even length from 4 to jV (G)j. Two cycles with the same length m, C1 = hu1; u2; ¢ ¢ ¢ ; um; u1i and C2 = hv1; v2; ¢ ¢ ¢ ; vm; v1i passing through an edge (x; y) are independent with respect to the edge (x; y) if u1 = v1 = x, um = vm = y and ui 6= vi for 2 · i · m¡1. Cycles with equal length C1;C2; ¢ ¢ ¢ ;Cn passing through an edge (x; y) are mutually independent with respect to the edge (x; y) if each pair of them are independent with respect to the edge (x; y). We propose a new concept called mutually independent edge-bipancyclicity. We say that a bipartite graph G is k-mutually independent edge-bipancyclic if for each edge (x; y) 2 E(G) and for each even length l, 4 · l · jV (G)j, there are k cycles with the same length l passing through edge (x; y), and these k cycles are mutually independent with respect to the edge (x; y). In this paper, we prove that the hypercube Qn is (n¡1)-mutually independent edge-bipancyclic for n ¸ 4.
dc.description.sponsorshipNational Taipei University,Taipei
dc.format.extent5P.
dc.relation.ispartofseriesNCS 2009
dc.subjecthypercube
dc.subjectbipancyclic
dc.subjectedge-bipancyclic
dc.subjectmutually independent
dc.subject.otherWorkshop on Parallel and Distributed Computing
dc.titleThe Mutually Independent Edge-Bipancyclic Property in Hypercube Graphs
分類:2009年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
01-105_ykshih@cs.nctu.edu.tw_thesis.pdf157.58 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。