完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Chang-Tsun
dc.date.accessioned2009-06-02T07:23:15Z
dc.date.accessioned2020-05-29T06:17:59Z-
dc.date.available2009-06-02T07:23:15Z
dc.date.available2020-05-29T06:17:59Z-
dc.date.issued2006-11-10T01:55:55Z
dc.date.submitted1999-12-20
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/3033-
dc.description.abstractThis work proposes a novel idea, called SOIL, for reducing the computational complexity of the maximum a posteriori optimization problem using Markov random field by exploiting the local characteristics so that the searching in a virtually infinite label space is confined in a small finite space. Globally the number of labels allowed is as many as the number of image sites while locally the labels assigned to the 4-neighbour plus a random one. Neither the prior knowledge about the number of classes nor the estimation phase of the class number is required in this work. The proposed method is applied to the problem of texture segmentation and the result is compared with those obtained from conventional methods.
dc.description.sponsorship淡江大學, 台北縣
dc.format.extent7p.
dc.format.extent802910 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries1999 NCS會議
dc.subjectMarkov Random Field
dc.subjectStochastic Relaxation
dc.subjectSimulated Annealing
dc.subjectTexture Segmentation
dc.subjectBayesian Estimation
dc.subject.otherImage Analysis
dc.titleReducing the Computational Complexity of Markov Random Fields within an Arbitrarily Large Texture Label Space
分類:1999年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ncs001999000158.pdf786.7 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。