題名: | 結合慣性測量單元(IMU)與Deep Learning演算法 進行汽車姿態預估 |
其他題名: | Combining inertial measurement unit (IMU) and depth learning algorithm for vehicle attitude estimation |
作者: | 黃俊穎 黃正毓 |
關鍵字: | 卷積神經網路 深度學習 慣性測量單元 車輛姿態預估 機器學習 CNN Deep Learning IMU Machine Learning Vehicle Attitude |
系所/單位: | 電子工程學系, 資訊電機學院 |
摘要: | 在交通發達的時代中,高交通事故已漸漸成為社會上重視的問題, 駕駛人行駛車最大的優點是可以依據開車的經驗累積,可以隨時應變道路上各種的突發狀況,然而交通事故的發生,卻有九成以上是人為造成。
交通事故發生的主要原因不外乎是因駕駛人容易受到外在因素干擾、疲勞駕駛或是使用智慧型手機而導致車禍的發生,例如:土地面積 廣大的國家,往返兩地往往就要數十小時甚至跨日,對駕駛人而言是重大的負擔,因此提出了自動駕駛,主要考量為機器無精神上的考量。
在此報告中,我們提出基於加速度和角速度的車輛姿態識別方法,並且使用深度學習演算法卷積神經網路 CNN (Convolution Neural Network)來建構神經網路,和使用慣性測量單元IMU (Inertial Measurement Unit)來收集汽車的六軸訊號。特別的是我們建構了特別的CNN模型來學習六軸IMU的訊號,使其效能精準度兼具。此外,我們總共收集了800個訓練資料,並經由特殊的預處理方法,得到59200筆的訓練資料。最終實驗結果證明,此CNN網路架構是相當良好的,可以在完整動作的20%以內完成預估,精準度達到98%(測試來自於800訓練樣本,當中有10%是尚未訓練的),當中並沒有經過任何的特徵擷取,並且此深度學架構可以在樹梅派3上運行,而每次的預估時間均小於0.5秒。 In the paper, we propose an acceleration-based and angular-velocity-based vehicle attitude recognition method by using a popular deep learning algorithm, i.e., Convolution Neural Network (CNN). We use an Inertial Measurement Unit (IMU) to collect six-axial signal of a vehicle. In particular, we construct a CNN model to learn the characteristics of six-axial IMU signal and the model can be used to predict vehicle attitudes. We constructed training data consists of 800 package from six attitudes. In addition, we preprocess the 800 package that each package will be broken down. Finally, our training data is 59200 sample-train. The experiment results show that the CNN works well, which can reach an average accuracy of 98% by the time of 1/5 of the overall action without any feature extraction methods. Due to our optimization of the convolution kernel number, this work can reach real-time processing capability. The estimated time of each action is less than 0.5 sec based on the raspberry pi3 development board. |
日期: | 2017-10-27T07:53:12Z |
學年度: | 105學年度第二學期 |
開課老師: | 陳冠宏 |
課程名稱: | 專題研究(一) |
系所: | 電子工程學系, 資訊電機學院 |
分類: | 資電105學年度 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
D0343302105208.pdf | 1.62 MB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。